- Assignments AB 2020-2021. 1.09 Average Vs. Instantaneous Rates. 1.10 Secant, Tangent, and Normal Lines. Mean Value Theorem.
- This AP Calculus AB class covers Topic 8.1 - Finding the Average Value of a Function on an Interval, with a tie to Topic 6.7 - The Fundamental Theorem of Calculus and Definite Integrals.
Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more. AP Calculus AB — Riemann Sums, Trapezoidal Sums, & Average Values Below is our AP Calculus AB unit test on Riemann sums, trapezoidal sums, and average value of functions. These questions involve breaking down an integral into simple geometric shapes that can be used to calculate the area under a function. Average Function Value The average value of a function f (x) f (x) over the interval a,b a, b is given by, f avg = 1 b−a ∫ b a f (x) dx f a v g = 1 b − a ∫ a b f (x) d x To see a justification of this formula see the Proof of Various Integral Properties section of the Extras chapter.
Hide All NotesSection 6-1 : Average Function Value
For problems 1 – 4 determine ({f_{{rm{avg}}}}) for the function on the given interval.
- (fleft( x right) = 8{x^4} - 7{x^3} + 2) on (left[ { - 2,1} right])
- (fleft( x right) = left( {4 - x} right){{bf{e}}^{{x^{,2}} - 8x}}) on (left[ {1,4} right])
- (fleft( x right) = 6x - frac{{4x}}{{{x^2} + 1}}) on (left[ { - 3,0} right])
- (fleft( x right) = cos left( {3x} right){left[ {2 + sin left( {3x} right)} right]^4}) on (left[ {0,frac{pi }{6}} right])
- (fleft( x right) = 10 - 4x - 6{x^2}) on (left[ {2,6} right])
- (fleft( x right) = 7{x^2} + 2x - 3) on (left[ { - 1,1} right])
- (fleft( x right) = 9 - 2{{bf{e}}^{4x + 1}}) on (left[ { - 1,2} right])
- (fleft( x right) = 8 - cos left( {frac{x}{4}} right)) on (left[ {0,4pi } right])
Below is our AP Calculus AB unit test on Riemann sums, trapezoidal sums, and average value of functions. These questions involve breaking down an integral into simple geometric shapes that can be used to calculate the area under a function. A majority of these problems require the memorization of a simple formula, which can then be used to find an approximation for the area under a curve.
Please wait while the activity loads.If this activity does not load, try refreshing your browser. Also, this page requires javascript. Please visit using a browser with javascript enabled.
Congratulations - you have completed .
You scored %%SCORE%% out of %%TOTAL%%.
Your performance has been rated as %%RATING%%
$261$ |
$379$ |
$Δx = dfrac{4 − 0}{4} = 1$
The outputs for $0$, $1$, $2$, $3$, $4$ are shown in the table below:
We can take the sum of the values on the right of each sub-interval, or the sum of the outputs of $1$,$2$,$3$, and $4$. This sum is $6 + 21 + 86 + 261 = 374$.
$0$ |
$π$ |
$Δx = dfrac{frac{3π}{2} − 0}{3} = dfrac{π}{2}$
The outputs for $0$, $frac{π}{2}$, $π$, $frac{3π}{2}$ are shown in the table below:
We can take the sum of the values on the left of each sub-interval, or the sum of the outputs of $0$, $frac{π}{2}$, and $π$. This sum is $1 + 0 + (−1) = 0$.
$10$ |
$24$ |
$Δx = dfrac{4 − 0}{2} = 2$
The table below shows the outputs for the function at $0$, $1$, $2$, $3$, and $4$.
The midpoint of the interval $[0, 2]$ is $1$, and the midpoint of $[2, 4]$ is $3$. The sum of the outputs of $1$ and $3$ is $12$. Since $Δx$ is $2$, the final answer is $2 cdot 12 = 24$.
$22$ |
$66$ |
$23$ |
$29$ |
$30$ |
$60$ |
$109.5$ |
$438$ |
The general trapezoidal sum formula for equal sub-intervals is as follows:
$dfrac{Δx}{2} [f(a) + 2f(a + Δx)~+ $ $2f(a + 2Δx) + ⋯ + f(b)]$
Plugging in the values from the table into the trapezoidal sum formula:
$dfrac{1}{2} [0 + 2(3) + 2(12) + 2(27)~+ $ $2(48) + 2(75) + 108] = 219$
$1532$ |
$1720$ |
The general trapezoidal sum formula for equal sub-intervals is as follows:
$dfrac{Δx}{2} [f(a) + 2f(a + Δx)~+$ $2f(a + 2Δx) + ⋯ + f(b)]$
Plugging in the values from the table into the trapezoidal sum formula:
$dfrac{1}{2} [0 + 2(0) + 2(56)~+$ $2(468) + 1008] = 766$
$dfrac{1325}{12}$ |
$dfrac{2150}{12}$ |
$dfrac{1}{5−0} displaystyleint_0^5(x^3 + 2x^2)dx$
Solving gives the following definite integral:
$dfrac{1}{5} left[dfrac{1}{4} x^4 + dfrac{2}{3} x^3 right]$ on the interval $[0, 5]$.
=$dfrac{1}{5} left[dfrac{1}{4} (5)^4 + dfrac{2}{3} (5)^3 right]$ $− dfrac{1}{5} left[dfrac{1}{4} (0)^4 + dfrac{2}{3} (0)^3 right]$
$= dfrac{1}{5} left[dfrac{625}{4} + dfrac{250}{3}right]$ $= dfrac{125}{4} + dfrac{50}{3}$
$= dfrac{375 + 200}{7}$ $= dfrac{575}{12}$
6.7 Average Value Of A Functional Calculus Equation
$frac{1}{6}e^2 + e^6$ |
$frac{1}{2}e^2 + frac{1}{6}e^6$ |
$dfrac{1}{3 − 0} displaystyleint_0^3(e^{2x} + 5)dx$
Using a simple $u$-substitution and the power rule, the integral is equal to:
$dfrac{1}{3} left(dfrac{1}{2} e^{2x} + 5x right) + C$
Evaluating the definite integral on the interval $[0, 3]$:
$dfrac{1}{3} left[dfrac{1}{2} e^{2(3)} + 5(3) right]$ $−dfrac{1}{3} left[dfrac{1}{2} e^{2(0)} + 5(0) right]$
$= dfrac{1}{6} e^6 + 5 − dfrac{1}{6}$
$= dfrac{1}{6} e^6 + dfrac{29}{6}$
$dfrac{1}{2π}$ |
$−dfrac{1}{2π}$ |
$dfrac{1}{frac{π}{2} −0} displaystyleint_0^{frac{π}{2}} sin(x) cos(x)dx$
A simpler way to solve this integral is to rewrite the integrand as
$frac{1}{2} sin(2x)$.$dfrac{2}{π} cdot dfrac{1}{2} displaystyleint_0^{frac{π}{2}} sin(2x)dx$
Performing a $u$-substitution:
$(−1) cdot dfrac{2}{π} cdot {1}{2} cdot{1}{2} cdot cos(2x)$
Applying the first fundamental theorem over the given bounds:
$−dfrac{1}{2π} [cos(π) − cos(0)]$
$= −dfrac{1}{2π}(−1 − 1)$
$= dfrac{1}{π}$
$dfrac{3}{π} ln left(dfrac{1}{2} right)$ |
$dfrac{3}{π} ln(2)$ |
$dfrac{1}{frac{π}{3} − 0}$ $displaystyleint_0^{frac{π}{3}} tan(x)dx$
$= dfrac{3}{π} [−ln|cos(x)| ]$
Applying the first fundamental theorem using the given bounds:
$dfrac{3}{π} left(−ln left| cos left(dfrac{π}{3} right) right| − (−ln |cos(0)|) right)$
$= dfrac{3}{π} left(−ln left(dfrac{1}{2} right) + ln(1) right)$
$= −dfrac{3}{π} ln left(−dfrac{1}{2}right)$
6.7 Average Value Of A Functional Calculus 14th Edition
1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 |
11 | 12 | End |
6.7 Average Value Of A Functional Calculus Calculator
Next Practice Test:
Trigonometric Integrals >>
AP Calculus Menu >>